


How to build a Hangman game using
PowerApps

A fantastic way to learn a new language or tool is to build a game using it, in this case, a
‘Hangman’ game in a PowerApps.

This includes:

1. Building a few collections to track activity
2. Using Galleries to display a Keyboard
3. Using SVG to draw the hangman
4. Using a timer to make a loop to set it all up

It is made up of the Following main elements:

1. Collections
1. The Answer Collection
2. The Keyboard or Letters Collection using a timer to loop

2. Galleries
1. The Keyboard Gallery
2. The Answer Gallery

3. Setting the Resets
4. The Hangman Drawing with SVG code
5. You win OR You Lose Displays – using Enhanced Groups
6. Final Cleanup

https://app.designrr.io/#1
https://app.designrr.io/#2
https://app.designrr.io/#3
https://app.designrr.io/#4
https://app.designrr.io/#5
https://app.designrr.io/#6
https://app.designrr.io/#10
https://app.designrr.io/#7
https://app.designrr.io/#8
https://app.designrr.io/#9


Introduction

What is a Hangman game?
The Hangman game, for those who are not familiar, is a word guessing game, for every wrong
letter chosen a part of the hangman is drawn and for every correct letter chosen, that letter is
placed into the correct position on the word. To win you need to get all the letters or guess the
word correctly before the full Hangman picture is complete.

All good hangman players start with the Vowels of course:

 
If you don’t manage to guess all the correct letters then the full picture of the stick person
hanging is complete and “You lose!!!”.  Click the “Another Go” button to try again and it all resets.



Introduction

 
Then of course if you manage to get the word correctly guessed you are presented with a smile
and a message “You win!!!”

 
There you have it, a great game to entertain you for hours.



Building the game

Let’s take a look at how it is built.
Looking at the game on the screen you have the following areas, each built of a collection and
gallery:

1. The Answer – Showing the individual letters of the word and which ones have been selected
correctly.

2. The Keyboard – a button for each letter.
3. The Hangman – The picture of the hangman is drawn piece by piece.

In addition to these, there is also a collection for the correct letters that have been selected and
the wrong letters that have been selected. Keeping track of what the user has clicked so we
know which keyboard buttons to grey out and which correct guesses to show on the word.

To start building this PowerApp we choose the ‘Canvas app from blank’ option in PowerApps,
select ‘Tablet’, give it a name and then click ‘Create’.

This will then create your PowerApp and we are ready to begin building, starting with our
collections.



Answer Collections

The Answer Collection
You will require two sets of data in two sheets of an excel spreadsheet for this PowerApp:

1. Your Words Data – A table of answers.
2. Your Drawing Data, which is SVG code.

Attached is the example from this game, you may want to create your own – LGB-
HangmanData.

You will need to create and save the �le to a known location so that you can import it into two
collections within your PowerApp.

Step 1 – Within your PowerApp, select ‘View’ from the top menu, then ‘Data sources’, then select
‘Add a data source’. Choose the relevant data source for the location of your Excel �le e.g.
OneDrive or SharePoint could be used.

Then choose your �le and select that you want both sheets/tables from within it and then Click
‘Connect’.

https://media.collab365.community/c365jobs/wp-content/uploads/2019/03/14165752/LGB-HangmanData.xlsx


Answer Collections

You will then be able to see your two data collections and we are ready to move to the next
stage.



Answer Collections

Step 2 – Choose the ‘Insert’ menu, select ‘Button’ and move it to the bottom right-hand corner.
Eventually, this button will be hidden.

Rename the button to ‘Reset’ using the left-hand panel, and select top code bar to put some
code in as per the screenshot below.



Answer Collections

This code will set the variable ‘vvRandomNumber’ to a Rounded up (RoundUp) number that is
arrived at by taking a number between 0 – 1 (Rand) and multiplying that by the number of rows
we have in the Words data source, then �nally removing any decimal places by setting the last
argument to ‘0’.

You can then test this by adding a label to the screen and setting its value to the variable
‘vvRandomNumber’, then running the program by holding down the ‘alt’ key, and click your
button. The label should then show a di�erent number each time.



Answer Collections

Step 3 – The next part is to use that Random number to select a random word from the Answer
column of the Words data collection and set the ‘vvAnswer’ variable to that word.



Answer Collections

Again you can test this is working by setting the value of the label we added previously to
‘vvAnswer’ and then hold down ‘Alt’ to run the PowerApp. As you click the button you should see
the label text change to a di�erent word each time.

Step 4 – Next we need to build a collection from the random word returned using the Split
function to split the word in ‘vvAnswer’ and place each letter as an item in the new collection
‘ccAnswer’.

Now when we click onto our screen, hold down the ‘alt’ key and click the button, you will of
course get a new word, however this time if you select ‘View’ tab from the top menu, and below
that select ‘Collections’ you will see the collection ‘ccAnswer’ as shown below with each letter of
the word split into a collection.



Keyboard Collections

There we have our �rst collection built for the Answer.

The Keyboard or Letters Collection
One option for creating the keyboard collection of letters would be to type out the code
something like this:



Keyboard Collections

However for a large collection that is probably not the most e�cient way to do it.  There is no
loop in PowerApps but we need something to repeat itself so we are going to use a timer.

As part of this, we are going to use the ‘Char’ command, you can test this by putting a label on
your screen and setting the text value of that label to. ‘Char(65)’ and also try ‘Char(90)’ . You
should get the letter ‘A’ for the �rst one and the letter ‘Z’ for the second, you may have guessed
it that in between those numbers we have the alphabet. So we just need to count from 65 to 90.

Step 1– Firstly ‘OnStart’ of the ‘App’ we are going to set a variable to letter A or to the Char
number of letter A which is 65.



Keyboard Collections

Step 2 – Next we are going to add a timer control to our screen and set the duration to = ‘100’. 
The time control can be found from the top menu, select ‘Insert’ then ‘Controls’.  Move your
control to the bottom right of the screen and set the duration property to 100.

NB: Each of these elements that we do not need to see in the PowerApp will be hidden at the
end.

Step 3 – Next we are going to select ‘Action’ from the top menu and then ‘OnTimerEnd’ property,
and add the code for what we want it to do. Once the timer is set up correctly this will add a
letter to the collection ‘ccLetters’ each time the timer ends, and increment the ‘vvletterNum’
value so as to add the next letter the next time the timer ends.



Keyboard Collections

Step 4 – Now we need to control when the time will start, and how long it will repeat for. We are
going to add the same code to 3 of the properties of the timer.

To do this with the Timer still selected as per the screenshot above, from the ‘Property’ drop
down choose ‘Start’. We want to start the time whenever the number of rows in our new
‘ccLetters’ collection is less than 26, as we know that’s how many letters are in the alphabet.

Copy that code and repeat it for the ‘AutoStart’ and ‘Repeat’ properties of the timer. This will
mean that the timer will start, and repeat until the number of letters in our collection is 26.

Step 5 – Now we can run the App to test if it works ok. Click on the ‘App’ and the ‘…’ 3 dots menu
next to it and select ‘Run OnStart’. 



Keyboard Collections

Then from the top right-hand corner of the screen click the ‘Play’ button to run the PowerApp,
the time should have auto-started in the background and populated our collection. Close the
PowerApp to come back into the designer window.

We can then from the top menu choose ‘View’ and then ‘Collections’, to see our ‘ccLetters’
collection all populated with the Alphabet as below:



Galleries

Keyboard Gallery
At this stage we have now built our 2 collections, the next stage will be to display those
collections starting with the Keyboard.

Step 1 – Choose from the ‘Gallery’ menu a ‘Blank Vertical’ Gallery.

Step 2 – In the Gallery Properties settings on the right-hand side, set the data source to our
‘ccLetters’ collection.

Also, set the ‘Wrap count’ to = 10.



Galleries

Step 3 – We now need to resize the Gallery to the approximate size we would like each button to
be, and add a button. To do this follow these steps:

1. Click the edit button in the top left-hand corner of the Gallery.
2. Drag the highlighted box to the approximate size of each button.
3. Then select ‘Button’ from the top menu.

On selecting a button, because we have a gallery data source set to the ‘ccLetters’ collection, it
will add 26 buttons, one for each data item in the collection.



Galleries

Move and size the keyboard to the bottom left of the screen where it will be in the �nal game.

Step 4 – We now need letters to show on each button of the keyboard.  To do this you need to
choose the ‘Text’ property of the button and update it to ‘ThisItem.Letter’. As the Gallery is using
our Letters collection as its data source, each button has a corresponding record in the data
source, so this will set the text of each button to that letter.



Galleries

Step 5 – We now need to set what is going to happen when each letter is clicked.  The logic for
this is:

If the letter is in the ‘ccAnswer’ collection

    then copy the letter into the ‘ccRight’ collection

If the letter is NOT in the ‘ccAnswer’ collection

   the copy the letter into the ‘ccWrong’ collection

To do this we select ‘Action’ from the top menu and then ‘OnSelect’, then enter the following
code:



Galleries

Again we can test this by holding down the ‘Alt’ key and clicking some of the letters that are in
your answer and some that are not. (NB: You should still have your test label showing the
answer on the screen to help this).

Then select ‘View’ from the top menu and then ‘Collections’, and now you will have the ‘ccRight’
and ‘ccWrong’ collections with data in them.



Galleries

Step 6 –   Now we want the buttons to be disabled so that they cannot be clicked twice in the
same game. So we go into the ‘DisplayMode’ property of the button and add code to carry out
the following logic.

If this buttons letter is in ccRight or ccWrong then 

DisplayMode = Disabled

Else

DisplayMode = Edit

Here is the code to achieve this, you will notice as you enter it that the buttons you have
selected before and are in either of the collections ‘ccRight’ or ‘ccWrong’ will go grey and be
disabled.

There we have it the Keyboard is ready to go, the next thing to look at is how to show the
Answer.



Galleries

The Answer Gallery
The Answer Gallery needs to show a dash for each letter of the Answer so the player knows how
many letters are in the word, and when a correct answer is chosen it needs to display that letter
in the correct position.

Step 1 – Add another Gallery in the same way you did for the Keyboard Gallery but this time
select the ‘Blank Horizontal’ option.

1. Set the data source = ‘ccAnswer’.
2. Then click the edit button on the top left of the Gallery and size it to be the expected size of

one letter in the word.
3. Click ‘Insert’ from the top menu and then ‘Icons’. Scroll all the way down and click ‘Rectangle’.

We should have something like this:

Now to make this into the letter dashes that display at the bottom:

1. Set the height on the right-hand Properties window to = 2
2. Select the ‘Y’ Property in the top left-hand property drop down, OR to get there quickly just

click the ‘Y’ label on the properties window and it will do that for you.
3. Set the ‘Y’ property to = ‘Parent.TemplateHeight’.

Like this and resulting in the dashes being displayed:



Galleries

Then all you need to do is make sure the Gallery is dragged out to be wide enough to cover the
largest word you have and position it above the Keyboard.

Step 2 – Next we need to add our letters:

1. If you are not already in edit mode of the Gallery then click the edit button at the top left of
the Gallery.

2. Select ‘Insert’ from the top menu and select ‘Label’.
3. At this time PowerApps will likely guess that you want each label to show the data in your

‘ccAnswer’ collection if it doesn’t simply set the Label ‘Text’ property to = ‘ThisItem.Result’.
4. Just to make it look a little nicer, select ‘Home’ from the top menu and then center align and

set to the size and colour of your choosing.

So we should have something looking like this:



Galleries

Step 3 – We now need to tweak this so that only the letters that have been selected and added
to the ‘ccRight’ collection are shown.

Select the ‘Visible’ property and update it to ‘ThisItem.Result exactin ccRight’. You will see that
this will now hide any letters that are not in ‘ccRight’ collection and show any that are in it.

There we have it, the Answer Gallery all set up. Feel free to hold down the ‘Alt’ and test it is all
working as expected.



SVG Drawing

The Hangman Drawing
Next, we move on to our Hangman Drawing. To do this we are going to use SVG.

SVG is a markup language, here is an example showing a box 400 wide by 600 high, with a black
Line in it.

Each time we want to add more to the picture we can add code for the relevant line we want to
draw, so for the next line in the hangman picture it would look like this:



SVG Drawing

We mentioned earlier about the Drawing data being SVG code, if you used the example you will
have already uploaded the Drawing data into the Collection.

Each line in this data represents one step of the drawing, that will be triggered for each wrong
answer given in the Hangman game. There are 8 possible wrong answers before you lose and
the full hangman is drawn.

So we need to understand how many of these code snippets we need to concatenate together,
the number of which will be determined by how many letters are in the ‘ccWrong’ collection. i.e.
how many wrong guesses there have been.



SVG Drawing

So let’s head back to the App and start to add the drawing.

Step 1 – Remove any Debug labels we had previously, showing the letter or the word, ready for
the image to go on the right-hand side of the App screen.  Then…

1. From the ‘Insert’ menu select ‘Media’ and chose ‘Image’. This will place an image box on your
screen.

2. Drag the image box over to the right and make it around the size you want your hangman.
3. Set the Image Property with the initial code shown in the screenshot below. This will

concatenate all the lines of SVG in the Drawing data source. Which will, therefore, show the
fully drawn hangman.



SVG Drawing

Step 2 –  Next we need to make the picture only show the relevant part of the image. So we
want it to Concatenate the same number of lines of SVG code as the number of letters that the
user has got wrong.

To do this add to the code as per the screenshot below:

As you complete this, you should see the drawing update to show the picture with the same
number of drawing steps as you have letters in your ‘ccWrong’ collection currently. Which is
however may wrong answers you clicked when testing earlier.



SVG Drawing

As with our other steps, it is worth testing this by holding down the ‘Alt’ key and trying to get
some more letters wrong.

Setting the Resets
We are yet to add in the messages for winning and losing, but before we do we need to do
some of the cleanup and reset actions for when the application is opened up and when the
reset button is pressed.

Step 1 – Select the ‘App’ from the left-hand menu and in the ‘OnStart’ property enter the
following in order to clear the ‘ccLetters’ collection.



SVG Drawing

Step 2 – Next select the ‘Screen1’ or whatever you have called your screen, and select the
‘OnVisible’ property. We are going to add code to select the reset button, so the code on that
button triggers when the screen opens meaning all the elements are reset.  Add the code as
shown, however you may have set the name of your button to something else.

Step 3 – We now need to add a couple of things to the buttons ‘OnSelect’ property that we did
not add earlier in order to empty the ‘ccRight’ and ‘ccWrong’ collections when the button is
clicked. Like this:

Now we are ready to switch on the experimental feature. 



Win / Lose Message Displays

You win You Lose Displays – Using Enhanced Groups
We now need to display the messages for when a user wins, and when a user loses. To do this
we are using an experimental feature called ‘Enhanced Groups’. To switch this on we need to go
out of the App.

Step 1 – Select ‘File’  from the menu, then ‘App Settings’ then ‘Advanced Settings’.

Scroll down to Experimental features – these are experimental so may be changed or removed
at any time so don’t rely on them in production.

Select the “Try the enhanced Group Control”.

Once selected go to Save on the left-hand menu bar, and click save.



Win / Lose Message Displays

Then click close at the bottom of the left-hand menu bar.

Step 2 – Go back in and Open your PowerApp.

You will notice that it displays the dashes for the word, but the Keyboard is not yet generated.

If you click the play button at the top right-hand side you should see your Keyboard being
dynamically created and appearing on screen. You can speed up how fast this gets created by
adjusting the duration in the timer setting to a shorter time frame.

Close the PowerApp to go back into the design window.

Step 3 –  Now we are going to bring in a new group that is only going to show in certain
circumstances.

Select ‘Insert’ from the top menu, and from the ‘Controls’ list select ‘Group(experimental)’. This
will put the Group box in the top of your PowerApp screen.



Win / Lose Message Displays

Next, we are going to make that Group show in the middle of the screen by changing the X and
Y properties to set it into the middle.

So for the X property:

and for the Y property:

This will now set your Group box in the Middle of the screen.

Then select from the right-hand properties window a white �ll on the Group so that it appears
to sit on top of any other elements on the screen.

Rename your ‘Group1’ to be ‘LoseMsg’ to make it easier to follow later.



Win / Lose Message Displays

Step 4 – Setting the contents of your Lose group message box.

1. Ensuring you have the Group selected, then from the ‘Icons’ menu select one of the sad face
emojis to insert. Size and position to your preference.

2. Add a ‘Label’ to the Group and set it to “You Lose!!!”, and size and position to your preference.
3. Then insert a ‘Button’ and set the button text to “Try Again” or something similar.
4. You can play around with the Groups border and colour settings to get the box displaying to

your preferences.

You should end up with something similar to this:



Win / Lose Message Displays

Step 5 – Now to make the ‘Try Again’ button reset the game. Select the button and set the
‘OnSelect’ property to = ‘Select(ButtonReset).  (NB: You may have named your �rst reset button
something di�erent so watch out for that).

Step 6 – Now we only want this group to show when the number of letters in ‘ccWrong’
collection is greater than the number of rows in our Drawing data. i.e. the user has lost.

To do this select the ‘Visible’ property of the ‘LoseMsg’ group and enter the code as shown:

As with our other steps you can now test this, by holding down the ‘Alt’ key and guessing letters
until you get the full hangman, the Group box should then display. Then clicking try again
should reset it all.

Step 7 – Now we follow a very similar set of steps to create the Win Message. The best way to do
this is:

1. Right click on the ‘LoseMsg’ in the left-hand bar, and select ‘Copy’.
2. Then right click on the ‘Screen1’ and click ‘Paste’.
3. Rename it to ‘WinMsg’.
4. Set the Visible to = ‘True’ so we can set up the group as the Win message.



Win / Lose Message Displays

We now have our win message but it needs to be changed to make sense and work correctly by
doing the following steps:

1. Delete the icon and replace with a smiley face.
2. Change the text to ‘You Win!!!’.
3. Select the ‘Visible’ property of the ‘WinMsg’ group and enter the code as shown below, this is

to compare the number of correct guesses against the number of distinct letters in the
Answer.

Then we can test, we should have a fully working game, with a win and a lose message, that can
be reset each time to try again.

Final Cleanup
Then just to clean up we need to hide the button and timer that are still showing on the bottom
right of the screen.

Simply select the timer and the button and select the ‘Visible’ property and set it to = ‘false’.

There we have it, our �nal app ready to play.



Summary

Summary and Refresh
1. Split Function – To create our answer and split it into separate letters.
2. Using a Timer to Loop – To build our keyboard collection.
3. Used exactin – To choose which buttons were going to be enabled and disabled by checking if

the letter was in the ‘ccWrong’ or ‘ccRight’ collection. It was also used on the Answer gallery to
decide which letters to show.

4. Drawing with SVG  – To create our drawing with the concatenate function to add a new line of
SVG code for each wrong answer until the hangman was fully drawn or the answer was
guessed correctly.

5. Enhanced groups for Messages –  To give us our Win and Lose message.

About the Author
I get a huge buzz from taking clients’ problems and creating solutions that
work and can be maintained easily long term. I am even more passionate
about training others to problem solve. If I can get another person to taste
the buzz of technical problem solving, then I have achieved my goal. I
�rmly believe data presentation should be beautiful, showing the hidden
trends, allowing management to explore data easily. I train and consult in
SharePoint, Flow, PowerApps Power BI and VBA.

Laura presented this information at the Collab365 PowerApps Virtual Summit in March 2019.

She is a MicroJobs Freelancer and o�ers a variety of MicroJobs covering PowerApps and other
topics. You can review her Freelancer pro�le here: https://jobs.collab365.community/user-
pro�le/LauraGB/

https://jobs.collab365.community/user-profile/LauraGB/

